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A Matrix Formulation for Noise Transduction
as a General Case of Noise Measure

Robert B. Hallgren, Member, IEEE

Abstract-—— Conventional noise characteristics of an active de-
vice are given by the minimum noise figure, F,.;,, the optimum
source reflection coefficient, [';.,:, and a noise resistance 12,,. The
noise measure extends the noise figure to include to available
gain of network, for the case of a conjugate output match,
and gives values that minimize the noise power available from
the network consistent with maximum available gain. Noise
transduction follows as a general case of noise measure by using
the transducer gain with any output load. A new noise equation is
derived that is solved for the minimum transduced noise, V;, the
optimum source impedance, and the optimum load impedance.
These equations minimize the noise power delivered to the load
impedance consistent with a maximum in the transducer gain.

1. INTRODUCTION

ONVENTIONAL noise models for an active device or

circuit use a noiseless two-port network and correlated
noise sources [1]. The noise figure, as defined by Friis [2],
is the ratio between the noise power originating from all
the noise sources to the noise power originating from the
generator noise source alone. This ratio has a minimum
value for positive real source impedances, Fyi,, and an
associated optimum reflection coefficient Iy ,¢, as calculated
from the network containing the noise sources only. Haus
included the active network into the noise figure calculation
and arrived at the noise measure equation [3]. The noise
measure equation minimizes the noise power available from
the network coincident with a maximum in the available gain
[4].

The available noise power and the available gain are used
in these equations so the values found are independent of the
impedance at the output of the network. These values are used
as a means to compare different devices, biases, or processes,
and present a reasonable and convenient measure of device
quality. In designs using the noise figure parameters, the choice
of the output load is usually that value which gives the highest
gain for the specified source impedance z,. The optimum
output load, ziopt, is the conjugate of the output impedance
of the network, zoy¢, with the optimum z, at the input.

Using zop¢ is usually sufficient and gives the highest gain,
but in cases where this impedance makes the network unstable,
or where the gain of the network is low, a better choice for
the load impedance is available. This report extends the noise
measure equation to include the load impedance, and uses
the noise power dissipated by the load impedance in place
of the available noise power. The quantity found is thus the
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Noisy Network

Fig. 1. Equivalent circuit used in noise figure calculations. All noise sources
are included into a noisy network, which is driven by a noiseless source and
terminated by a load impedance Z;.

transduced noise, with the solution comprising the minimum
noise transduced and both the source and the load impedances.

II. NOISE FIGURES

Fig. 1 shows the network used to calculate the noise figure.
The noise of the network is modeled by the correlated chain-
form noise sources e, and ¢,, with the the thermal noise of
the source impedance z; modeled by e;. All noise sources
have been moved into an equivalent noisy network driven by
a noiseless source and terminated by z;. At the input:

Vi=E,+6+ Vs, 1)

where
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and V, = (?’2). @)

%2

By defining an output impedance vector Z] = (2 1), (where *
denotes complex conjugation) the output vector is V3 = i27;.
The source voltage is v, = wvi + 412, or vy = Z;LV1,
with ZI £ (12z). If v, = 0, premultiplying (1) by ZI
allows solving for the output current 45. The autocorrelation of
2 gives, assuming stationary random processes, the spectral
density of the current at the output by the Wiener—Khintchine
theorem [5]. For notational simplicity, terms such as E E, for
example, will represent the average of ensembles of spectra of
windowed time functions of the source noise voltage generator
output using single-sided spectra with 0 < w < oo.

Assuming independence between the thermal and the net-
work sources, the autocorrelation of s is
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where

55t = ( {enn) <‘?n?§>) 4
((Znem (intn) @
0 1
10
to allow writing ZI PZ, = 2Re(z,), giving the thermal noise

voltage of the source as

ZIE.El1Z, = 4kTAfRe(zs)

= 2kTAfZIPZ,. 6)

is the noise matrix. The matrix P = ) will be used

with Boltzman constant k, the temperature T', and a bandwidth
of Af. The power dissipated by the load impedance is

o 1, .
Pioag = (i2i3)Re(2) = 5<Z2Z2>ZlPZlT- (6)

The noise figure uses the available noise power Py =
Pioad(z = 22), which used a conjugate match at the network
output. Since Z1Z; = (2 + 2,), a conjugate load gives
7171 = 2Re(zs). Using P makes Z17, = ZIPZ, = ZIPZ,.
Therefore, after substitution and cancellation in (6), the power
available from the noise sources is

2kTAfZIPZ, + Zféé‘fz

Pavs =
27iPZ,

™

The noise figure for the network is the ratio of the noise
power available from all sources, to the noise power available
from the source impedance alone. The source impedance noise
power is simply ATAf, and from (7) the noise figure F' is

716677

Pol=_2222e 3)
UTAFZIPZ,

The noise figure (8) is solved by finding the eigenvalue from
the characteristic equation det (A1 — P~1§67) = 0, where 1
is the identity matrix. Using A in (8) gives the corresponding
eigenvector. The least-positive eigenvalue is Fi,;, — 1, and the
elements of its eigenvector give zsopt, by division. For a single-
sided spectrum (e, e} = 4kTAfR,, {6] and the conventional
noise parameters are seen as simply a solution set of the noise
figure eigenfunction (8).

III. NOISE MEASURE

The circuit used to find the noise measure is shown in Fig. 2.
In addition to the noisy network, the active device or circuit is
included as a two-port. The noise measure is found in a manner
similar to that used to find the noise figure. The voltage and
current at the input are the same as for the noise figure, but

Z , is used to include the

load impedance from the network output. The output current

the transmission matrix, T' =

and voltage are related by V; = (;’l> = ,L(le) At the
1

active network input, Vo = ¢;TZ;, and from (1) the input to
the noisy network is, thus, given by

Vi=E.+64+4T727. ©)

15

i v,

Fig. 2. Equivalent circuit used in noise measure. and transduced noise
calculations. Active network is added between the load and the noise network
to include the available gain or the transducer gain into the noise equations.

With v; = 0, premultlplymg (9) by -Z! gives i;, with an

autocorrelation of
W  ZIEEYZ 4+ 71667,
(iiy) = .

zirzziT 7,

(10)

The power dissipated by 2; is Poag = %(ili;‘)ZlTPZl,
and the available output power is found using a conjugate
match for z;. With the network included in the circuit z;
must be matched to the output impedance of the network
Zout, including the source impedance z;. The conjugate load
can be found through a direct transformation of the source
impedance vector via ZIT = ZlJr P, which gives 2/ = Zi—i?'
This load impedance allows writing the denominator of (16)
as (Z172) {ZTTTZ ) = (2 P2,) (2{TPT2,). The noise
power available from the network, P,,y, after multiplying (10)
by Z PZ;, using a conjugate match in the denominator, and
using (7), will be expressed by

Pavn (2kTA fZIPZ, + Zja(sfzs> <
KTAf TAfZIPZ,

ZIPZ, )
zZiTpriz,
ay

It gives the conventional noise figure (8) when divided by the
available gain

=F-G,.

‘Pz
Ga é TZS . : (12)
ZiTPTYZ,
The noise measure as defined by Haus uses the quantity
N = & (F 1) , which evaluates to
~ 718612,
kTAFZI(P — TPTHZI

(13)

The noise measure equation’'(13) uses the increase in the
network noise divided by the increase in the source noise,
as measured at the network output. It is solved in a manner
similar to the noise figure. The least-positive eigenvalue, as

found from det (/\1 - [P-TPT] _15§T> =0, gives Ny,
and the corresponding eigenvalue gives zsopt.

IV. NOISE TRANSDUCTION

The transduced noise begins with (10), and is a general case
of a nonideal load impedance. If the source transformation is
realized at the output, then the conjugate match will result in
the lowest noise measure, at a maximum in both the available
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gain and in the transducer gain. If this transformation results
in a load impedance that is unstable, or if other criteria must
be met that requires a different load impedance, then the
noise transduction can be used to optimize the transducer
gain and minimize the noise power transduced to any load.
Referring to (10) and Fig. 2, the power delivered to z; is
Pioad = +(i13}) Z] PZ;. Substituting for ZIE,E}Z, yields

Pioad <2kTA FZiPZ, + Zj&éTZs> ZiP7Z1PZ,
kTAf 2UTAfZIPZ, VAUWAVAURIA

using the noise figure F' from (8), and the transducer gain
defined by

s Z{PZ2Z1PZ,

S el Sl 2y 15
AUNAYAURIA =

t

In a manner similar to that used for the noise measure, the
noise transduction is obtained from (14) by using

2 Gi(F=-1)
The denominator of (15) is expanded by noting Z1TZ,Z] T Z,
= ZlT Tt Z,Z1T 7, this is used to write the noise transduction
(16) as two matrix equations, with one equation for each
impedance vector. Written as an eigenfunction of Z,, the noise
transduced to the load is

z1[66%) Z,

N, = an

TZ,Z Tt
2k TAfZ <P —~ -ﬁﬁl—)>z

The least positive eigenvalue of (17) is the noise transduction,
and the corresponding eigenvector is Z,. The noise transduc-
tion as an eigenfunction for Z; is written as

N = (2l 2, Zi P2, as)
¢ 7 \4kTAfRe(zs) ZIT(P_T;@(Z;?)ZI.

The solutions to (18) are the load impedance vector and the
noise transduction.

V. CONCLUSION

The conventional noise figure uses the available power from
the noise sources and from the source impedance. The noise
measure includes the available gain of the network and uses
a load that is the conjugate of the network output impedance.
The transduced noise allows for an arbitrary load and is a
general case of the noise measure. Noise transduction uses the
power delivered to the output load and thus depends upon both
the input and the output impedances. Calculating the noise
power transduced to the output results in a pair of matrix
equations, the solutions to which are the input and output
impedances and the transduced noise.

The noise transduction equations (17) and (18) reduce to
the noise measure equation (13) under the condition of a
matched load. With a matched load the transducer gain is the
same as the available gain, and the values should agree. This
equivalence requires that the optimum source impedance can
be transformed exactly by the network and be realized as the
output impedance. To find this load impedance from (13), the
noise measure source impedance must be used, not the noise
figure source impedance. For cases other than this the system
will not be optimized. The source impedance that optimizes
the system to a fixed load is found from (17). If the load
is not fixed, but is otherwise resiricted, then both (17) and
(18) can be solved for the extrema of the noise transduced,
as constrained to the range of z;. This is perhaps the greates‘t
utility of the transduced noise equations in that they allow
finding an optimum impedance for both the source and the load
of a device or circuit, for whatever range is available for the
load. By including stability limits or interstage criteria, circuit
or device noise performance can be optimized consistent with
a maximum in the transducer gain.
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