
14 IEEE MICROWAVE AND GUIDED WAVE LETTERS, VOL. 2. NO. 1, JANUARY 1992

A Matrix Formulation for Noise Transduction

as a General Case of Noise Measure
Robert B. Hallgren, Member, IEEE

Abstract— Conventional noise characteristics of an active de-

vice are given by the minimum noise figure, Fmin, the’ optimum

source reflection coefficient, 17..Pt, and a noise resistance R.. The
noise measure extends the noise figure to include to available
gain of network, for the case of a conjugate output match,
and gives values that miuimize the noise power available from
the network consistent with maximum available gain. Noise
transduction follows as a general case of noise measure by using

the transducer gain with any output load. A new noise equation is
derived that is solved for the minimum transduced noise, lV1, the

optimum source impedance, and the optimum load impedance.

These equations minimize the noise power delivered to the load

impedance consistent with a maximum in the transducer gain.

I. INTRODUCTION

CONVENTIONAL noise models for an active device or

circuit use a noiseless two-port network and correlated

noise sources [1]. The noise figure, as defined by Friis [2],

is the ratio between the noise power originating from all

the noise sources to the noise power originating from the

generator noise source alone. This ratio has a minimum

value for positive real source impedances, F’min, and an

associated optimum reflection coefficient 17~OPt,as calculated

from the network containing the noise sources only. Haus

included the active network into the noise figure calculation

and arrived at the noise measure equation [3]. The noise

measure equation minimizes the noise power available from

the network coincident with a maximum in the available gain

[4].

The available noise power and the available gain are used

in these equations so the values found are independent of the

impedance at the output of the network. These values are used

as a means to compare different devices, biases, or processes,

and present a reasonable and convenient measure of device

quality. In designs using the noise figure parameters, the choice

of the output load is usually that value which gives the highest

gain for the specified source impedance z.. ‘The optimum

output load, .zzOPt,is the conjugate of the output impedance

of the network, zOUt, with the optimum .z~ at the input.

Using zlOPt is usually sufficient and gives the highest gain,

but in cases where this impedance makes the network unstable,

or where the gain of the network is low, a better choice for

the load impedance is available. This report extends the noise

measure equation to include the load impedance, and uses

the noise power dissipated by the load impedance in place

of the available noise power. The quantity found is thus the
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Fig. 1. Equivalent circuit used in noise figure calculations. All noise sources
are included into a noisy network, which ;S driven by a noiseless source and

terminated by a load impedance Zl,

transduced noise, with the solution comprising the minimum

noise transduced and both the source and the load impedances.

II. NOISE FIGURES

Fig. 1 shows the network used to calculate the noise figure.

The noise of the network is modeled by the correlated chain-

form noise sources en and i ~, with the the thermal noise of

the source impedance .z~ modeled by e.. All noise sources

have been moved into an equivalent noisy network driven by

a noiseless source and terminated by Z1. At the input:

v~=E. +6+v2,

where

(1)

“=(::)Es=(:)’=(?)
()and V2= ~ . (2)

By defining an output impedance vector Z; = (.z~ 1), (where *

denotes complex conjugation) the output vector is V2 = i2Zl.

The source voltage is v. = VI + il ,z~, or v. = Z: VI,

with Z: ~ (1 zS). If v. = O, premultiplying (1) by Z~

allows solving for the output current i2. The autocorrelation of

~2 gives, assuming stationary random processes, the spectral
density of the current at the output by the Wiener–Khintchine

theorem [5]. For notational simplicity, terms such as E, E:, for

example, will represent the average of ensembles of spectra of

windowed time functions of the source noise voltage generator

output using single-sided spectra with O ~ w < w.

Assuming independence between the thermal and the net-
work sources, the autocorrelation of i2 is
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where

(

fft = (e~el) (eni:)
(ine~) (ini~) )

(4)

()01
is the noise matrix. The matrix P 2

10
will be used

to allow writing Z~PZ, = 2Re(.z~ ), giving the thermal noise

voltage of the source as

Z~EsE~Z. = 4kTA~Re(z,)
—– 2kTAfZ~PZ,. (5)

with Boltzman constant k, the temperature T, and a bandwidth

of A f. The power dissipated by the load impedance is

The noise figure uses the available noise power Pav~ =

P1.a,d(Zl = z;), which used a conjugate match at the network
output. Since Z~ Zz = (xl + z,), a conjugate load gives

Z~Zt = 2Re(zs). Using P makes Z~Zi = Z~PZ, = Z~PZ1.
Therefore, after substitution and cancellation in (6), the power

available from the noise sources is

2kTAfZ:Pz8 + Z:6dzs
P.v, =

2Z:PZ. “
(7)

The noise figure for the network is the ratio of the noise

power available from all sources, to the noise power available

from the source impedance alone. The source impedance noise

power is simply kTAf, and from (7) the noise figure F is

(8)

The noise figure (8) is solved by finding the eigenvalue from

the characteristic equation det (Al – P–l titit) = O, where 1

is the identity matrix. Using J in (8) gives the corresponding

eigenvector. The least-positive eigenvalue is Fmin – 1, and the

elements of its eigenvector give z~OPtby division. For a single-

sided spectrum (ene~ ) = 4kTA f Rn [6] and the conventional

noise parameters are seen as simply a solution set of the noise

figure eigenfunction (8).

III. NOISE MEASURE

,The circuit used to find the noise measure is shown in Fig. 2.

In addition to the noisy network, the active device or circuit is

included as a two-port. The noise measure is found in a manner

similar to that used to find the noise figure. The voltage and

current at the input are the same as for the noise figure, but

the transmission matrix, T =
()

ab
cd

, is used to include the

load impedance from the nctwbrk ou’tput. The output current

and voltage are related by V1 =
(:) = ‘(7) ‘t ‘he

active network input, V2 = ilTZ1, &d %-em (l) th~ input to

the noisy network is, thus, given by

V1 = E, +6+izTZz. (9)
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Fig. 2. Equivalent circuit used in noise measure and transduced noise

calculations. Active network is added between the load and the noise network
to include the available gain or the transducer gain into the noise equations.

With v. = O, premultiplying (9) by Z: gives il, with an

autocorrelation of

(i,i;) =
Z;E&:Z~ + @~dtZ~

Z: TZlZ~T~Z8
(lo)

The power dissipated by Z1 is &d = +(i~i~)ZJPZ~,
and the available output power is found using a conjugate

match for ,Z1. With the network included in the circuit Z1

must be matched to the output impedance of the network

,zO. t, including the source impedance z.. The conjugate load

can be found through a direct transformation of the source

impedance vector via ZjT = Z~P, which gives zl — ~.s _ b+d.z,

This load im edance allows writing the denominator of (10)

~ S)= (Z}PZ)(@TpTtZ).Thenoiseas (ZjTZz) Z/TtZ

power available from the network, P.vn, after multiplying (10)

by Z~PZl, using a conjugate match in the denominator, and

using (7), will be expressed by

Pav n

(

2kTAfZ:PZ~ + Z~66tZ,

kTAf = 2kTAfZ~PZ8 )“(2::’2.)

=F, G.. (11)

It gives the conventional noise figure (8) when divided by the

available gain

G. ~
z:pz~

Z: TPTtZ8 “

The noise measure as defined by Haus
~ = G.(~-1)~, which evaluates toa

(12)

uses the quantity

.,—
2kTAfZ:(P – TPTt)Z: “

(13)

The noise measure equation’ (13) uses the increase in the

network noise divided by the increase in the source noise,

as measured at the network output. It is solved in a manner

similar to the noise figure. The least-positive eigenvalue, as

( )
found from det Al – [P – TPTt] ‘lc$c$t = O, gives ~~in,

and the corresponding eigenvahte gives zSOPt.

IV. NOISE TRANSDUCTION

The transduced noise begins with (10), and is a general case

of a nonideal load impedance. If the source transformation is

realized at the output, then the conjugate match will result in

the lowest noise measure, at a maximum in both the available
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gain and in the transducer gain. If this transformation results

in a load impedance that is unstable, or if other criteria must

be met that requires a different load impedance, then the

noise transduction can be used to optimize the transducer

gain and minimize the noise power transduced to any load.

Referring to (10) and Fig. 2, the power delivered to zl is

~load = ~ (i~i~ ) Z/PZt. Substituting for Z~E,E~Zs yields

f’load =

(

2hTAfzjPz. + 2:6(s2,

)(

zjPzlz:Pz.

kTAf 2kTAfZiPZ. “ ZiTZIZIT+Z. )

=F. Gt, (14]

using the noise figure F from (8), and the transducer gain

defined by

z~Pzlz:Pz.
Gt& ~

Z. TZIZ~T~Z~ “
(15)

In a manner similar to that used for the noise measure, the

noise transduction is obtained from (14) by using

~,2G, (F-1)

G~–1 ‘
(16)

The denominator of (15) is expanded by noting Z~TZIZ/TtZs
— Z~TtZs ZjTZt, this is used to write the noise transduction

~6) as two matrix equations, with one equation for each

impedance vector. Written as an eigenfunction of Z., the noise

transduced to the load is

Nt =
z: [ti($qz,

( )“
(17)

2rkTAfZ: P – W 2s

The least positive eigenvalue of (17) is the noise transduction,

and the corresponding eigenvector is Z,. The noise transduc-

tion as an eigenfunction for Z1 is written as

The solutions to (18) are the load impedance vector and the

noise transduction.

V. CONCLUSION

The conventional noise figure uses the available power from

the noise sources and from the source impedance. The noise

measure includes the available gain of the network and uses

a load that is the conjugate of the network output impedance.

The transduced noise allows for an arbitrary load and is a

general case of the noise measure. Noise transduction uses the

power delivered to the output load and thus depends upon both

the input and the output impedances. Calculating the noise

power transduced to the output results in a pair of matrix

equations, the solutions to which are the input and output

impedances and the transduced noise.

The noise transduction equations (17) and (18) reduce to

the noise measure equation (13) under the condition of a

matched load. With a matched load the transducer gain is the

same as the available gain, and the values should agree. This

equivalence requires that the optimum source impedance can

be transformed exactly by the network and be realized as the

output impedance. To find this load impedance from (13), the

noise measure source impedance must be used, not the noise

figure source impedance. For cases other than this the system

will not be optimized. The source impedance that optimizes

the system to a fixed load is found from (17). If the load

is not fixed, but is otherwise restricted, then both (17) and

(18) can be solved for the extrema of the noise transduced?

as constrained to the range of .Z[. This is perhaps the greatest

utility of the transduced noise equations in that they allow

finding an optimum impedance for both the source and the load

of a device or circuit, for whatever range is available for the

load. By including stability limits or interstage criteria, circuit

or device noise performance can be optimized consistent with

a maximum in the transducer gain.
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